CLASS	SUBJECT	CHAPTER	TOPIC	WEBLINK
XII	COMMER CE COMPUT ER	Ch - 2 : Capital- Fixed and working 20-07-2020 to 31-07-30 Ch : Boolean Algebra (SOP & POS Reduction using K-Map)	Business finance and it's features and importance Sources of finance for different types of business firms Financial planning and it's features and importance Factors affecting capital structure Fixed capital and factors affecting it Working capital-meaning, types and factors affecting it Differences between fixed and working capital Links: INSTRUCTIONS Read the chapter throughly Learn the important definitions with key words Learn and understand the differences given properly Understand the terms: business finance, capital structure, fixed capital and working capital The factors affecting the various above topics to be understood well Refer to the links given Follow the online lectures uploaded in the school website At the end complete the questions given *The assignments given below have to be done in the Computer Science notebook. 1. Given the Boolean function $F(A, B, C, D) = \sum(0, 2, 4, 8, 9, 10, 12, 13)$ (i) Reduce the above expression by using 4-variable Karnaugh map, showing the various groups (i.e. octal, quads and pairs). [4] (ii) Draw the logic gate diagram for the reduced expression.	https://youtu.be/LwZvDw6k1R Y https://youtu.be/sEvtY_vzlsY https://youtu.be/9j2Yhpcknzc https://youtu.be/NCJUCAImaP Q https://youtu.be/DZC-Fye-P6Y https://youtu.be/PX9FX9kYSP w https://youtu.be/2hMW54Tsqj Q https://youtu.be/X8u4dp5cMp U
			 Assume that the variables and their complements are available as inputs. [1] 2. Given the Boolean function F(A,B,C,D) = ∑ (0, 1, 2, 3, 5, 7, 13, 15, 8, 9, 10, 11) (i) Reduce the above expression by using 4-variable Karnaugh map, showing the various groups (i.e. octal, quads and pairs). 	

			(ii) Draw the logic gate diagram for the reduced expression. Assume	
			that the variables and their complements are available as inputs.	
		3.	Given the Boolean function $F(A,B,C,D) = \pi (3, 4, 5, 6, 7, 10, 11, 14, 15)$	
			(iii) Reduce the above expression by using 4-variable Karnaugh map,	
			showing the various groups (i.e. octal, quads and pairs).	
			(iv) Draw the logic gate diagram for the reduced expression.	
			Assume that the variables and their complements are available	
			as inputs.	
		4.	Given the Boolean function $F(X,Y,Z,W) = \pi (5,7,12,13,14,15,8,10)$	
			(v) Reduce the above expression by using 4-variable Karnaugh map,	
			showing the various groups (i.e. octal, quads and pairs).	
			(vi) Draw the logic gate diagram for the reduced expression. Assume	
			that the variables and their complements are available as inputs.	
			1 1	
	Ch : Data	1.	A matrix Arr[-2 10, 38] is contain double type element. If the base	
	Structure		address is 4110, find the address of D[4][5], when the matrix is stored in	
	Address		Column Major Wise .	
	Address Colorelation in		ISC 2016 [2]	
		2.	A matrix P[5][10] is stored in the memory with each element requiring 8	
	1 wo		bytes of storage. If the base address at P[0][0] is 1400, determine the	
	dimensional		address at P[10][7], when the matrix is stored in Row Major Wise .	
	Arrays	3.	A matrix $A[m]$ [m] is stored in the memory with each element requiring 4	
			bytes of storage. If the base address $A[1][1]$ is 1500 and address of $A[4][5]$	
			is 1144 determine the order of matrix, when it is stored in column Major	
			wise.	
		4.	A matrix A[m X m] is stored in the memory with each element requiring	
			2 bytes of storage. If the base address A[1][1] is 1019 and address of	
			A[3][4] is 1608 determine the order of matrix, when it is stored in	
			column Major wise .	
		5.	A matrix D[15] [13] is stored in the memory with each element requiring 4	
			bytes of storage. If the base address A[1][1] is 2500 and address at D[8][7]	
			when it is stored in Row Major wise.	

Rlakshm' DIRECTOR ACADEMICS