Question \& Answer based on derivation of SOP and POS Expression

Subject -Computer Science
Class -XII
$Q 1$. A combinational logic circuit with three inputs P, Q, R produces output 1 if and only if an odd number of 0 's are inputs.
(i) Draw its truth table.
(ii) Derive a canonical SOP expression for the above truth table.

Ans :-
(i)

\mathbf{P}	\mathbf{Q}	\mathbf{R}	OUTPUT	Min terms
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{P}^{\prime} \mathbf{Q}^{\prime} \mathbf{R}^{\prime}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{P}^{\prime} \mathbf{Q R}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{P Q}^{\prime} \mathbf{R}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{P Q R}^{\prime}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	

(ii)

The Canonical SOP expression will be -

$$
P^{\prime} Q^{\prime} R^{\prime}+P^{\prime} Q R+P Q^{\prime} R+P Q R^{\prime}
$$

Q2. Find the Min term and Max term when:
$P=0, Q=1, R=1$ and $S=0$
Min term for the given values $=\mathbf{P}^{\mathbf{\prime}} \mathbf{Q} \mathbf{Q} . \mathbf{R} . \mathbf{S}^{\mathbf{\prime}}$
Max term for the given values $=\mathbf{p}+\mathbf{Q}^{\prime}+\mathbf{R}^{\prime}+\mathbf{S}^{\prime}$
Q3. Convert the following boolen expression into its Canonical POS form:

$$
F(A, B, C)=\left(B+C^{\prime}\right) \cdot\left(A^{\prime}+B\right)
$$

Ans :-
$\left(B+C^{\prime}\right) \cdot\left(A^{\prime}+B\right)$
$=\left(B+C^{\prime}+A \cdot A^{\prime}\right) \cdot\left(A^{\prime}+B+C . C^{\prime}\right)$
$=\left(B+\mathbf{C}^{\prime}+\mathbf{A}\right)\left(\mathbf{B}+\mathbf{C}^{\prime}+\mathrm{A}^{\prime}\right)\left(\mathbf{A}^{\prime}+\mathbf{B}+\mathbf{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathbf{C}^{\prime}\right) \quad[\mathrm{x}+\mathrm{yz}=(\mathrm{x}+\mathrm{y})(\mathrm{x}+\mathrm{z})$ by distributive law $]$
i.e. $\left(A+B+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B+C\right)\left(A^{\prime}+B+C^{\prime}\right)$

Q4. A training institute intends to give scholarships to its students as per the criteria given below:

* The student has excellent academic record but is financially weak.
* The student doesn't have an excellent academic record and belongs to a backward class.

Or

* The student doesn't have an excellent academic record and is physically impaired.
The inputs are:
INPUTS

A	Has excellent academic record
F	Financially sound
C	Belongs to backward class
I	Is physically impaired

(in all the above cases 1 indicates yes and 0 indicates no).
Output: X [1 indicates yes, 0 indicates no for all cases]
Draw the truth table for the inputs and outputs given above and write the SOP expression for $\mathrm{X}(\mathrm{A}, \mathrm{F}, \mathrm{C}, \mathrm{I})$.
Ans:
Truth table for given Function $X(A, F, C, I)$:-

A	F	C	1	X	Min Terms
0	0	0	0	0	
0	0	0	1	1	$A^{\prime} F^{\prime} C^{\prime} \mathbf{I}$
0	0	1	0	1	$A^{\prime} \mathrm{F}^{\prime} \mathrm{Cl}^{\prime}$
0	0	1	1	1	$A^{\prime} \mathrm{F}^{\prime} \mathrm{Cl}$
0	1	0	0	0	
0	1	0	1	1	$A^{\prime}{ }^{\prime} C^{\prime} 1$
0	1	1	0	1	$A^{\prime} \mathrm{FCl}{ }^{\prime}$
0	1	1	1	1	$A^{\prime} \mathrm{FCl}$
1	0	0	0	1	$A^{\prime} C^{\prime}{ }^{\prime}$
1	0	0	1	1	$A^{\prime} \mathbf{C}^{\prime} 1$
1	0	1	0	1	$A F^{\prime} \mathrm{Cl}^{\prime}$
1	0	1	1	1	$\mathrm{AF}^{\prime} \mathrm{Cl}$
1	1	0	0	0	
1	1	0	1	0	
1	1	1	0	0	
1	1	1	1	0	

SOP Expression for $X(A, F, C, I)$:
$A^{\prime} F^{\prime} C^{\prime} I+A^{\prime} F^{\prime} C I^{\prime}+A^{\prime} F^{\prime} C I+A^{\prime} F C^{\prime} I+A^{\prime} F C I^{\prime}+A^{\prime} F C I+A F^{\prime} C^{\prime} I^{\prime}+A F^{\prime} C^{\prime} I+A F^{\prime} C I^{\prime}+A F^{\prime} C I$

Q5. A school intends to select candidate for an Inter-School Essay Competition as per the criteria given below:

* The student has participated in an earlier competition and is very creative.

Or

* The student is very creative and has excellent general awareness, but has not participated in any competition earlier.

Or

* The student has excellent general awareness and has won prize in an enterhouse competition.
The inputs are:
INPUTS

A
B
D

C won prize in an inter-house competition
participate in a competition earlier is very creative
has excellent general awareness (in all the above cases 1 indicates yes and 0 indicates no).
Output: X [1 indicates yes, 0 indicates no for all cases]
Draw the truth table for the inputs and outputs given above and write the POS expression for $\mathrm{X}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$.

Ans:

Truth table for given input and outputs:-

A	B	C	D	X	MAX TERMS
0	0	0	0	0	$A+B+C+D$
0	0	0	1	0	$A+B+C+D^{\prime}$
0	0	1	0	0	$A+B+C^{\prime}+D$
0	0	1	1	1	
0	1	0	0	0	A+B'+C+D
0	1	0	1	1	
0	1	1	0	0	$A+B^{\prime}+C^{\prime}+D$
0	1	1	1	1	
1	0	0	0	0	$A^{\prime}+B+C+D$
1	0	0	1	0	$A^{\prime}+B+C+D^{\prime}$
1	0	1	0	0	$A^{\prime}+B+C^{\prime}+D$
1	0	1	1	1	
1	1	0	0	1	
1	1	0	1	1	
1	1	1	0	1	
1	1	1	1	1	

POS Expression for $X(A, B, C, D)$:
$(A+B+C+D) \cdot\left(A+B+C+D^{\prime}\right) \cdot\left(A+B+C^{\prime}+D\right) \cdot\left(A+B^{\prime}+C+D\right) \cdot\left(A+B^{\prime}+C^{\prime}+D\right) \cdot\left(A^{\prime}+B+C+D\right)$.
$\left(A^{\prime}+B+C+D^{\prime}\right) \cdot\left(A^{\prime}+B+C^{\prime}+D\right)$

